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Abstract— We introduce a framework that combines simple
and complex continuous state-action simulators with a real-
world robot to efficiently find good control policies, while mini-
mizing the number of samples needed from the physical robot.
The framework combines the strengths of various simulation
levels by first finding optimal policies in a simple model, and
then using that solution to initialize a gradient-based learner in
a more complex simulation. The policy and transition dynamics
from the complex simulation are in turn used to guide the
learning in the physical world. A method is developed for
transferring information gathered in the physical world back
to the learning agent in the simulation. The new information
is used to re-evaluate whether the original simulated policy is
still optimal given the updated knowledge from the real-world.
This reverse transfer is critical to minimizing samples from
the physical world. The new framework is demonstrated on a
robotic car learning to perform controlled drifting maneuvers.
A video of the car’s performance can be found at https:
//youtu.be/opsmd5yuBF0.

I. INTRODUCTION

Simple models are needed in the control design process
as many traditional methods such as classical, adaptive, and
optimal control rely on models with explicit equations of
motion to develop the required controllers. These simple
models are often deterministic and use closed-form, ex-
pressible equations of motion. Particularly in the case of
optimal control, resulting policies are sometimes open-loop
and depend entirely on the model used to compute them.
These restrictions on simple models used for control design
lead to models that sometimes neglect parts of the true
system, either because they are non-linear or because they are
just not well-enough understood to be expressed in equations.

More complex (and hopefully more accurate) simulations
are then used to verify and validate the controllers developed
using the simple models [1], [2]. These complex simulations
are typically stochastic, either through an attempt to model
the stochasticity inherent in the physical system, or as a
way to compensate for and capture unmodeled dynamics [3].
Complex simulators can also be “black-box” in the sense that
the equations of motion can not be easily written down or that
the simulation engine is proprietary or otherwise unavailable
(e.g. a commercial video game).

Learning-based methods such as reinforcement learning
(RL) can learn control policies directly from interacting
with the environment or a simulator, but usually at the
expense of requiring many samples before discovering useful
information [4]. In robotics, where domains are often high-
dimensional and continuous, significant progress has been

Mark Cutler and Jonathan How are with the Laboratory of Information
and Decision Systems, Massachusetts Institute of Technology, 77 Mas-
sachusetts Ave., Cambridge, MA, USA {cutlerm,jhow}@mit.edu

Simple 
Model

Complex 
Simulation

Real 
World

(Open Loop) 
Policy

Policy Parameters

Transition 
Dynamics

Observed Data

Learning-Based 
Control

Traditional 
Control

Increasing Data Accuracy and Cost

Increasingly Global Policy Searches

Fig. 1: Many robotic systems utilize models of varying
fidelity for design, validation, and control. Simple models
are good for finding policies using traditional control, while
more complex simulations (including the real world) can
use learning-based control methods to refine initial policies.
By sending observed data from the real world back to the
complex simulation, better policies are found in the real
world with fewer samples.

made recently by utilizing policy search methods that search
locally for improvements to the current policy. These meth-
ods scale well as the problem dimensionality increases, but,
due to the local nature of the search, typically lack any formal
guarantees as to global optimality and are subject to local
solutions.

As summarized in Figure 1, we introduce a new frame-
work for efficiently learning useful policies on real robots.
We use a series of simulators [5]–[7] and model-based policy
search RL to bootstrap real-world learning, improve policies
already found, and avoid local minima. The framework is
tested on a robotic car that learns to autonomously drift, or
drive sideways, using very little data. The main contributions
of this paper are (1) a way to incorporate principles of
optimal control for initializing policy parameters, (2) a
derivation of mixing real and simulated data together in order
to re-plan in a simulated environment, and (3) simulated and
hardware results empirically showing the benefits of using
prior information in the learning process.

II. BACKGROUND MATERIAL

Gaussian processes (GPs) [8] are a popular regression tool
for modeling observed data while accounting for uncertainty
in the predictions. Formally, a GP is a collection of random
variables, of which any finite subset are Gaussian distributed.
A GP can be thought of as a distribution over possible func-
tions f(x), x ∈ X such that f(x) ∼ GP(m(x), k(x,x′)),
where m(x) is the mean function and k(x,x′) is the
covariance function.

With a fixed mean function and data {X,y}, where X and
y are the input and output data, respectively, the predictive
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distribution for a deterministic input x∗ is

f∗ ∼ N (µ∗,Σ∗)

µ∗ = m(x∗) + k(x∗, X)(K + σ2
nI)−1(y −m(X))

= m(x∗) + k(x∗, X)β

Σ∗ = k(x∗,x∗)− k(x∗, X)(K + σ2
nI)−1k(X,x∗)

where β = (K + σ2
nI)−1(y −m(X)), K = k(X,X), and

σ2
n is the noise variance parameter.
In this paper the squared error kernel is used for its

computational advantages. Thus, the kernel is

k(x,x′) = α2 exp(−1

2
(x− x′)TΛ−1(x− x′)),

where α2 is the signal variance and Λ is a diagonal matrix
containing the square of the length scales for each input
dimension. The hyperparmeters (σ2

n, α2, and Λ) are learned
via evidence maximization [8].

Probabilistic Inference for Learning COntrol (PILCO) is
a recently developed model-based policy search RL algo-
rithm [9]. One of the key advantages of PILCO is a careful
handling of uncertainty in the learned model dynamics that
helps prevent negative effects of model bias. By explicitly
accounting for uncertainty, the algorithm is able to determine
where in the state space it can accurately predict policy
performance and where more data are needed to be certain
of future outcomes.

Learning begins by randomly applying control signals and
then using the observed data to build a probabilistic model of
the transition dynamics using GPs. This model is then used
to update the policy parameters by optimizing over long-term
roll-outs of the learned model. Closed-form gradients of the
optimization problem are available and so any gradient-based
optimization algorithm can be applied. Once converged, the
new policy parameters are executed on the system and the
process repeats until satisfactory performance is obtained.

III. POLICY SEARCH INITIALIZATION

Because continuous state-action spaces are prohibitively
large for performing global searches, many RL researchers
use prior knowledge to initialize learning algorithms. This
prior information often comes in the form of an initial
policy from an expert demonstration [4]. Many examples
of these initializations exist, such as learning helicopter
aerobatics [10] and learning to play table tennis [11]. These
expert initial policies give local search algorithms a good
initial policy from which to start a policy search.

While initial policies from expert demonstrations can be
extremely valuable, these demonstrations may not always
be available. As an alternative to expert demonstrations, we
generate initial policies from simple models using traditional
control techniques which are used to initialize the learning
in complex simulations. In this paper, Gauss Pseudospectral
Optimization Software (GPOPS) [12] is used to compute
these initial policies. In practice, any control solution method
applied to a model of the system can be used as a policy
initialization.

Note that additional learning beyond the resulting policy
from GPOPS is only needed when discrepancies exist be-
tween reality and the simple model. As any model (especially
a simple one) will rarely, if ever, perfectly match the physical
system, applying the open-loop optimal control policy from
GPOPS to a real robot will, in general, result in sub-
optimal or even dangerous behavior [13]. Therefore, these
policies are instead treated as an initialization for the learning
algorithm in the complex simulation.

The policies learned in the complex simulation are param-
eterized, with the parameter values found by the learning
algorithm. The primary focus in this paper is on policies
that are represented using a regularized radial basis func-
tion (RBF) network (equivalent to a deterministic Gaussian
process), where the centers, the associated targets, and the
length-scale values of the RBFs are the parameters to be
learned. The RBF network provides a general function ap-
proximation scheme for representing various policies.

To transfer the open-loop optimal control policy to the
complex simulator, the policy is approximated as a closed-
loop controller using an RBF network. Given a fixed budget
size on the number of RBFs allowed (typically based on
the computational constraints of the learning algorithm in
the complex simulation), the centers and targets of the RBF
network are found by applying the k-means algorithm [14]
to a discretrized representation of the optimal control policy
and corresponding optimal states from the simple model.
The length scale parameters are then found using evidence
maximization, just as the hyperparmeters of a Gaussian
process are typically computed. In practice, this is a quick
and easy way to train the RBF network using the optimal
control policy.

IV. REVERSE TRANSFER USING GAUSSIAN PROCESSES

The framework from Figure 1 is shown in Algorithm 1.
The algorithm first uses optimal control methods to find
a policy π∗s in the simple model Σs (line 2). This policy
is then approximated as an RBF network in line 3. Using
these policy parameters, the PILCO algorithm is used to
refine and update the initial policy using the more complex
simulation Σc in line 4. Once converged, the framework
passes these new policy parameters and learned transition
dynamics from the complex simulation to an instance of
PILCO running in the real world Σrw (line 6). Our previous
work [7] describes in detail this forward transfer of policy
parameters and transition dynamics. This paper primarily
deals with transfer in the other direction as described below.

After real data are observed, they can be passed back to the
simulator and used to re-plan (line 7). Finally, in line 8, the
algorithm exits when the re-planned policy is not sufficiently
different from the policy previously found in the simulator,
indicating that the new data provided by the real world will
not cause new policy performance or new exploration in the
simulator.

In practice, and where sufficient computational power
exists, several instances of PILCO in the simulation environ-
ment should be run in parallel. One of the main advantages



Algorithm 1 Continuous State-Action Reinforcement Learn-
ing using Multi-Direction Information Transfer

1: Input: Simple, deterministic simulation Σs, more com-
plex, stochastic simulator Σc, and real world Σrw

2: Use optimal control methods to find policy π∗s in Σs
3: Use k-means to approximate π∗s as πinitc with an RBF

network
4: Run PILCO in Σc with πc = πinitc as initial policy
5: while 1 do
6: Run PILCO in Σrw [7]
7: Run PILCO in Σc to get πnewc , combining GP pre-

dictions from Σrw
8: if ‖πnewc − πc‖ < ε then
9: break

10: else
11: πc = πnewc

of using a simulator is the low cost of obtaining samples.
Thus, to increase the probability of converging to the global
optimum, or of converging to a new local optimum, the
simulation can be run in parallel with various random seeds
and initial conditions. Then, the best performing or most
different policy can be tried on the real system.

To re-plan using real-world data, the algorithm must
determine if a given state-action pair is sufficiently well
known. With discrete representations of the state-action
space, this known-ness check is binary and depends only on
whether or not the current state-action pair has been observed
a sufficient number of times. With continuous states and
actions, the number of times a specific state-action pair has
been observed can not be counted as it is unlikely that the
exact same data will be observed multiple times. Instead, the
algorithm must determine if the current state-action pair is
sufficiently “close” to states and actions about which there is
little uncertainty. For this purpose, the covariance of the GP’s
representing the state-action space is used as a known-ness
measure.

The covariance is a measure of how uncertain the GP
is about the true function at the test input x∗, minus the
learned noise variance σ2

nI . Thus, Σ∗ approaches zero as
the true function is correctly modeled (or at least thought to
be correctly modeled). The actual predictive covariance of
y∗ is Σ∗ + σ2

nI and so does not approach zero unless the
data observations are noise free. Therefore, the value of Σ∗
relative to the underlying noise in the system, σ2

n, can be
used as a measure of how much uncertainty remains about
the function at a given test point. For the remainder of this
section a subscript (rw) is used to indicate variables relating
to data from the real world, and a subscript (sim) to denote
variables relating to simulated data.

The general approach for using data from the real world
when re-planning in the simulation will be to determine, for
each sampled state-action pair when doing long-term predic-
tions (when PILCO is sampling its model of the environment
to see how well a given set of policy parameters will work),

TABLE I: Parameter values used for the generalized logistic
function that dictates the extent to which state-action pairs
are known in the real world.

Q B x0

Value 1.5 400 0.02

how much information is known about that state-action
pair in the real world. When the real-world data are well
known, those transition dynamics will be used, otherwise, the
algorithm will default to the simulated values. Based on the
ratio of Σ∗ to σ2

nI , a scalar mixing value p(rw) is determined
that dictates what percentage of the real-world data should
be incorporated into the current prediction step. Thus, given
p(rw), the predictive mean is a linear combination of the
predicted mean from the simulated data and the real-world
data as

µ∗ = µ∗(sim)
+ p(rw)(µ∗(rw)

− µ∗(sim)
). (1)

Similarly, using standard results of mixing normal distribu-
tions, the predictive covariance becomes

β(sim) = (µ∗(sim)
− µ∗)(µ∗(sim)

− µ∗)T + Σ∗(sim)

β(rw) = (µ∗(rw)
− µ∗)(µ∗(rw)

− µ∗)T + Σ∗(rw)

Σ∗ = β(sim) + p(rw)(β(rw) − β(sim)), (2)

where β(sim) and β(rw) are defined for notational conve-
nience. The covariance between the input and output is
similarly defined as

Σx∗,f∗ = Σx∗,f∗(sim)
+ p(rw)(Σx∗,f∗(rw)

− Σx∗,f∗(sim)
).

(3)

In PILCO, given a multidimensional problem, each output
dimension is modeled using a separate GP. With determinis-
tic inputs, these separate GP’s would be independent, but in
PILCO uncertain inputs are passed through the GP’s to get
long-term cost and state predictions. Given these uncertain
inputs, the outputs of the GP’s covary and are no longer
independent. Thus, for a given state-action pair, an individual
p(rw) can not be determined for each output dimension, but
a single scalar value is found based on the entire output
covariance matrix.

For smoothness properties (derivatives of p(rw) are needed
in the learning process) a generalized logistic function f(x)
defined as

f(x) =
1(

1 +Q eB(x−x0)
) 1
Q

(4)

is chosen to determine p(rw) based on the norm of the current
covariance matrix and the norm of the learned noise variance
parameters representing the noise in the observed data. The
mixing probability p(rw) is therefore defined as

p(rw) = f

(
‖Σ∗(rw)

‖F
‖
[
σ2
n1
, . . . , σ2

nE

]
‖

)
(5)
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Fig. 2: Generalized logistic function for determining to what
extent data should be used from the real world.

where ‖.‖F is the Frobenius norm. A plot of p(rw) versus the
covariance ratio is shown in Figure 2, where the parameters
of the logistic function are given in Table I. With these
parameters the real-world data are only used if there is
very little uncertainty about the true function. Otherwise,
the simulated data are used. The shape of the logistic is
set based on how noisy the real world is believed to be.
In all the experiments tried in this paper, the parameters
in Table I worked well, without needing to tune them for
different domains.

Using equations 1-3, the transfer of information from
the real world back to the complex simulation is achieved
by computing p(rw) at each state-action pair during long-
term state predictions and using the combined output of
the mean, covariance, and input-output covariance. To use
these equations in PILCO the partial derivatives of these
expressions with respect to the input mean and covariance
are also needed. A full derivation of the required derivatives
is given on the first author’s website.1

V. RESULTS

Algorithm 1 is implemented in both simulated and real
domains to show the applicability of using real-world data
to re-plan in a continuous state-action simulator. In the
simulated domain, the “real world” is a simulator that differs
from the other simulation, demonstrating the performance of
the algorithm in controlled environments.

A. Simple 1-D Problem

The first test domain is a single state, single action domain.
This toy domain is used to illustrate how the reverse transfer
in line 7 of Algorithm 1 is accomplished. The domain
consists of a state x and action u. A saturating cost function
is c(x) = 1− e−

x2

2σ2 , with the dynamics being

ẋ =

{
−au2, u ≥ 0

−bu2, u < 0,
(6)

where |u| ≤ 1. In Σc and Σrw σ = 0.25 and a = 3, while
in Σc b = 5 and in Σrw b = 1.25. Figure 3 shows the mean

1http://markjcutler.com/papers/Cutler16_ICRA_
additional.pdf
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Fig. 3: Dynamics for the 1-D domain. In the simulator, the
optimal solution involves negative u while in the real world
the optimal solution uses postive u.

of the dynamics for the simulator and the real world, with
a sampling rate of 20 Hz. Each episode starts with x0 = 3
and, according to the cost function, tries to drive x to zero.
Both positive and negative values of u result in negative
velocities, but with varying magnitudes. In Σc, the optimal
solution is to start with negative u, while in Σrw the optimal
policy starts with positive u. With this simple domain, the
optimal control portion of Algorithm 1 is omitted and πinitc

is instead randomly initialized. The parameterized policy in
this domain is linear (u = Ax+ b) rather than using an RBF
network as in the other domains.

Figure 4 shows the performance of Algorithm 1 on this
simple problem. Each subplot shows the current represen-
tation of the GP modeling the transition dynamics (Equa-
tion 6). In Figure 4(a), the initial random policy explores the
state space. After this initial exploration, the first iteration
of the policy update phase finds the optimal policy as seen
by the low cost in Figure 4(b) and the new data all on the
negative side of u.

The policy and transition dynamics from Σc are passed to
Σrw as explained in [7]. Despite the dynamics being different
from the simulator, the gradient-based policy update scheme
does not explore policy parameters that would involve posi-
tive u values since the initial policy is in a local minimum.
As seen in Figures 4(c) and 4(d), the policy update phase
improves the initial policy, but stays on the negative side of
u.

Following Algorithm 1, the data observed from Σrw are
passed back to Σc. The GP in Figures 4(e) and 4(f) is a
combination of the data from Σrw where the variance was
low (negative u values) and Σc elsewhere, shown by the
embedded plots of p(rw). With this updated hybrid model of
the dynamics, the algorithm converges to a policy that favors
positive u first. While this new policy is not optimal in Σc,
is it optimal given the data observed from the real world.
This new policy is then passed back to Σrw whereupon the
policy improvement phase largely keeps the same policy,
converging to the true optimum in Σrw.

This simple example is clearly contrived to show the per-
formance of Algorithm 1; however, it illustrates an important
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Fig. 4: Algorithm 1 running on a simple 1-D domain. Each subplot shows the current representation of the GP modeling the
transition dynamics (Equation 6). In Figures (a) and (b), an initial random policy explores the state space and then quickly
converges to the optimal policy, as seen by the low cost in (b) and the new data all in the negative u range. Policy and
transition dynamics from Σc are passed to Σrw and used in (c) and (d). The real-world policy is improved, but is stuck in a
local minimum based on the initialization. In (e) and (f), model data is passed back to Σc which uses data from Σrw where
possible to find a policy involving positive u. This optimal policy (with respect to Σrw) is passed to Σrw in (g) and (h) and
the algorithm terminates.

point of any gradient-based policy improvement method:
convergence to local solutions is sensitive to the initial
policy. Algorithm 1 attempts to formally provide a method
to account for initial policies that come from inaccurate
simulators. Note that the policy found in Figure 4(d) is
not necessarily bad—it solves the problem of driving x
to zero. The reverse transfer framework provides a way,
though, to revisit the simulator and verify, given the updated
information from the real world, whether or not a better
policy exists for the real world.

B. Drifting Car

The final example in this paper shows Algorithm 1 applied
to a small robotic car learning to drift, or drive sideways. The
car is outfitted with slick plastic tires, making it quite difficult
to control on our hard lab floor.

While numerous other works have demonstrated aggres-
sive control with cars (e.g. [15]–[17]), this work focuses on
utilizing prior information in the learning process.

The target task in this section is to control the car in a
steady-state drift, where the car maintains a constant side-
ways velocity. Recent work demonstrated an LQR and back-
stepping control approach to stabilizing a car under steady-
state drift conditions [18]. The controller calculates steady-
state cornering conditions which rely on exact knowledge of
tire and road forces and conditions. In reality, these values
will not be known and inaccuracies in these parameters
will yield steady-state errors in the control law. Also, the
controller developed is only valid around an equilibrium and
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Fig. 5: State variables used for the steady-state drifting
domain. The body-frame forward and side velocities are Vx
and Vy , respectively, with V being the total velocity and ψ̇
the body turn rate. The slip (or drift) angle is β while R is
the radius of curvature of the desired trajectory.

so open-loop commands based on expert driver data are
needed to get the vehicle close to the desired state before
the controller can be engaged.

The goal of the learning algorithm is to control the vehicle
to constant forward, side, and turn rate velocities, resulting in
a steady-state drifting motion as indicated by Figure 5. The
vehicle state consists of body-frame component velocities Vx
and Vy , a turn rate ψ̇, and the current wheel speed ω. Turn
rate and wheel speed are measured using on-board sensors
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Fig. 6: Policy roll-outs of the simulated car learning to drift.
The light colored lines show the performance of the optimal
policy from Σs when first applied to Σc. The dark lines show
the improvement the policy search algorithm is able to make
over the initial policy. A single representative roll-out of each
type is shown in (a), while (b) shows the mean and one
standard deviation of five learning runs, where each policy
was executed five times. Note that only the velocity states
are controlled here, and so the position starting locations in
(a) are irrelevant.

while body-frame velocities are measured using an external
motion capture system. Velocity information could be ob-
tained using GPS outdoors. The action δ is the command
sent to the on-board servo actuating the wheel steering. The
cost function is

c(x) = 1− e[−((Vx−Vxss )
2+(Vy−Vyss )

2+(ψ̇−ψ̇ss)2)/(2σ2)],
(7)

where the subscript ss signifies the desired steady-state
values for that variable. This cost function favors steady
state drifting where the state variables are kept at a constant
value, with a non-zero Vy component. The throttle setting
was kept constant as a car can maintain a steady-state
drift with just modulating the steering command. The car
used a high-current switching voltage regulator to keep
the battery voltage from affecting the performance of the
learning algorithm.

As in the previous domain, Σs is a deterministic version of
Σc. GPOPS is used to solve for π∗s , the optimal policy in the
deterministic simulation. Figure 6 shows the performance of
the initial policy from GPOPS in the noisy simulator com-
pared to the policy from Σc after several policy improvement
steps are made. The car is able to quickly initiate a drifting
motion by turning into the drift, briefly counter steering, and
then settling on a near constant steering angle.

Figure 7 shows the performance of the PILCO algorithm
in Σc when the deterministic simulator is not used. In this
example, the car starts with a forward velocity of 2 m/s
and then tries to turn around in minimum time, maintaining
a velocity of 3 m/s in the opposite direction. Here, both
the steering and throttle commands are learned. In this
domain, the problem is sufficiently complex with enough
local minima that PILCO is unable to solve the problem
without prior information. The problem was run several
times with varying initial random policy parameters, but in
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Fig. 7: The effect of a good prior on the performance of
PILCO. The light colored lines show the results of applying
PILCO to the car turning domain with randomly initialized
policy parameters (showing converged policy). In almost
every case, the algorithm is unable to find the correct
control inputs to turn the car around, instead getting stuck in
local optima. Figure (a) shows some representative samples
of the two cases while (b) shows the instantaneous and
cumulative costs for 20 learning runs for each case. This
figure highlights the need for the optimal control prior for
complicated domains.

almost every case PILCO was unable to find a policy that
quickly reversed the car’s direction. Figure 7(a) shows some
representative samples of the performance of PILCO in Σc
using an optimal control prior versus a randomly initialized
policy. In Figure 7(b), immediate and cumulative costs of 20
learning runs for each case are displayed. As shown by the
histogram, without prior information, PILCO was rarely able
to solve the problem.

This behavior is perhaps not unexpected. As noted in [4],
many, if not most, researchers doing RL in real robotics do-
mains initialize the problem with problem-specific data, often
through example demonstrations or hand-crafted policies. In
this domain, no one in the lab was expert enough to drive
the car in a steady-state drift. It was also not immediately
clear how to hand-craft a policy that would lead to this
behavior. Thus, the proposed algorithm uses principles of
optimal control to take the place of these demonstrations
and specific policies.

Figure 8 shows the performance of Algorithm 1 applied
to the real car. Figure 9 shows snapshots of the car as it
begins a steady-state drift from rest. The car is able to initiate
and maintain a steady-state drifting motion with a trajectory
radius of approximately 0.8 m. Drifting with other trajectory
radii was also successfully accomplished. The learned real-
world policy looks very similar to the optimal policy from
Σc, but with a longer period of counter-steering (see δ in
Figure 8 from 0.7–1.5 seconds). This highlights the utility
of incorporating simulated data into the learning framework.
Rather than having to learn the entire policy from scratch,
the learning agent just needed to learn those parts of the
policy that were different in the real world when compared
to the simulator.

Due to limitations in the size of the testing area, the
drifting domain was unable to be solved without prior infor-
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Fig. 8: Policy roll-outs of the real car learning to drift. The
light colored lines show the performance of the optimal
policy from Σc when first applied to Σrw. The dark lines
show the improvement the policy search algorithm is able
to make over the initial policy. A single representative roll-
out of each type is shown in (a), while (b) shows the mean
and one standard deviation of three learning runs, where
each policy was executed five times. The real car requires
a more counter steering than the simulated car to slow the
initial vehicle rotation. Note that only the velocity states are
controlled here, and so the position starting locations in (a)
are irrelevant.

Fig. 9: Results of Algorithm 1 applied to the real drifting
car. Snapshots of the car every 0.25 seconds are shown.
The vehicle starts from rest and quickly enters a controlled
drifting motion with a 0.8 m radius.

mation from the simulators. Executing random actions (the
typical initialization for PILCO) always resulted in the car
quickly running into a wall. For this problem, the simulated
data are necessary to solve the problem.

A video showing the performance of the drifting car can
be seen at https://youtu.be/opsmd5yuBF0.

VI. CONCLUSION

This paper developed a framework for incorporating op-
timal control solutions into the learning process and for
transferring data from real-world experiments back to sim-
ulators, allowing the simulator to re-plan using the updated
information. The re-planning both validates policies from the
real world and possibly leads to better real-world policies
by exploring more of the state-action space in the simulator.
The reverse transfer was combined together with forward

propagation in PILCO [7]. The resulting framework was
applied to a simple 1-D simulated domain, showing that the
reverse transfer can be necessary to find the optimal solution
in the target domain. Finally, the algorithm was applied to
a robotic car learning to drift. The task was sufficiently
complex that PILCO was unable to solve the problem without
the use of prior simulated information.
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